Asymptotic Stability , Concentration , and Oscillation in Harmonic Map Heat - Flow , Landau - Lifshitz , and Schrödinger Maps on R 2
نویسندگان
چکیده
We consider the Landau-Lifshitz equations of ferromagnetism (including the harmonic map heat-flow and Schrödinger flow as special cases) for degree m equivariant maps from R2 to S2. If m ≥ 3, we prove that near-minimal energy solutions converge to a harmonic map as t → ∞ (asymptotic stability), extending previous work (Gustafson et al., Duke Math J 145(3), 537–583, 2008) down to degree m = 3. Due to slow spatial decay of the harmonic map components, a new approach is needed for m = 3, involving (among other tools) a “normal form” for the parameter dynamics, and the 2D radial double-endpoint Strichartz estimate for Schrödinger operators with sufficiently repulsive potentials (which may be of some independent interest). When m = 2 this asymptotic stability may fail: in the case of heat-flow with a further symmetry restriction, we show that more exotic asymptotics are possible, including infinite-time concentration (blow-up), and even “eternal oscillation”.
منابع مشابه
A pr 2 00 9 ASYMPTOTIC STABILITY , CONCENTRATION , AND OSCILLATION IN HARMONIC MAP HEAT - FLOW , LANDAU - LIFSHITZ
We consider the Landau-Lifshitz equations of ferromagnetism (including the harmonic map heat-flow and Schrödinger flow as special cases) for degree m equivariant maps from R to S. If m ≥ 3, we prove that near-minimal energy solutions converge to a harmonic map as t → ∞ (asymptotic stability), extending previous work [11] down to degree m = 3. Due to slow spatial decay of the harmonic map compon...
متن کاملSelf-similar solutions of the one-dimensional Landau–Lifshitz–Gilbert equation
We consider the one-dimensional Landau–Lifshitz–Gilbert (LLG) equation, a model describing the dynamics for the spin in ferromagnetic materials. Our main aim is the analytical study of the bi-parametric family of self-similar solutions of this model. In the presence of damping, our construction provides a family of global solutions of the LLG equation which are associated with discontinuous ini...
متن کاملGlobal Questions for Map Evolution Equations
Just as the harmonic map equation is a geometric analogue of the classical Laplace equation for harmonic functions, so the classical linear evolution PDEs, the heat, wave, and Schrödinger equations, have geometric “map” analogues: the harmonic map heat-flow, wave map, and Schrödinger map equations. These equations are nonlinear when the target space geometry is nontrivial. Quite remarkably, the...
متن کاملSe p 20 06 Asymptotic stability of harmonic maps under the Schrödinger flow ∗
For Schrödinger maps from R ×R+ to the 2-sphere S, it is not known if finite energy solutions can form singularities (“blowup”) in finite time. We consider equivariant solutions with energy near the energy of the two-parameter family of equivariant harmonic maps. We prove that if the topological degree of the map is at least four, blowup does not occur, and global solutions converge (in a dispe...
متن کاملAsymptotic Stability of Harmonic Maps under the Schrödinger Flow
For Schrödinger maps fromR2×R+ to the 2-sphere S2, it is not known if finite energy solutions can form singularities (blow up) in finite time. We consider equivariant solutions with energy near the energy of the two-parameter family of equivariant harmonic maps. We prove that if the topological degree of the map is at least four, blowup does not occur, and global solutions converge (in a disper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010